Quadratically constrained quadratic program ============================================= We consider the following special QCQP problem: .. math:: \min_x -\frac{1}{2} x^T Q x + b^T x + d, ~\text{s.t.}~ \|x\|_2 \leq 1 where :MATH:`Q` is a symmetric positive definite matrix. We solve the problem with TMAC by using backward-forward splitting. Usage --------- In the bin folder, the executable file :cpp:type:`tmac_bfs_l2_ball_qp` solves the above problem. The usage for tmac_prs_demo is: .. code-block:: bash ./tmac_bfs_l2_ball [options] -nthread < total number of threads, default: 1. > -epoch < total number of epochs, default: 10. > -problem_size < the dimension of the problem, default: 0 > Example ----------- You can run the following command in the test directory to solve the l1 regularized least square problem for the large dense dataset. .. code-block:: bash ./bin/tmac_bfs_l2_ball_qp -nthread 1 -problem_size 100 -epoch 200 You can expect to get output similar to the following:: Parameter settings: --------------------------------- Problem size: 100 TMAC step size: 0.5 Operator step size: 0.05 Use controller: false --------------------------------- Objective value is: 45.8257 Computing time is: 1.97591 ||x||_2 = 0.834947 --------------------------------- .. note:: The current app use synthesis data, you can easily modify the code to load your own data. You can also modify the feasible set to other supported constraints.